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FOREWORD

The Piceance basin of northwestern Colorado contains vast resources—large quan-
tities of oil shale, valuable minerals, and water. The development of these resources
could benefit our Nation by satisfying the future requirements of industry, agriculture,
and municipalities.

The origin, abundance, and development of these resources are being studied by
government, industry, and universities. Investigations indicate that the shale oil,
minerals, and water occur together in complex relations that are only partly under-
stood, and more intensive studies are needed if these resources are to be properly
developed. Large-scale development of oil shale will require tremendous quantities
of water. Unexplored ground-water reservoirs may be able to provide part of the
required supplies. Because development may also affect the streams, ground water,
and atmosphere, well-planned controls are needed. Proper resource development also
will require close cooperation between industry and various levels of government.

This paper was prepared by a variety of specialists within the U.S. Geological
Survey. The technical information is presented in a clear, graphic manner to enable
the report to be understood by a wide spectrum of readers and to provide them with
a broad understanding of the challenge and choices of development of the shale oil,
minerals, and water resources of the Piceance basin.

,ﬂu,w—:\7 AL

Dallas L. Peck, Director
U.S. Geological Survey
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GLOSSARY

Aboveground retort.—A large container in which crushed
oil shale is heated in order to decompose the kerogen in-
to oil and light hydrocarbon gases.

Acidity.—The ability of a solution to neutralize strong
bases.

Alkalinity. —The ability of a solution to neutralize strong
acids.

Alluvial deposit.—Unconsolidated sedimentary material
such as clay, sand, and gravel that is eroded from
bedrock, transported, and laid down by flowing water.
Also known as alluvium.

Appropriation.—The diversion and use of a specified quan-
tity of water for a specified beneficial use.

Aquatic environment.—The sum of all the external physical,
chemical, and biological conditions and influences that
affect the life and development of an organism in a body
of water. The environment surrounding an aquatic
organism is rarely constant. The quality of an individual's
life in an aquatic world is directly dependent on the quali-
ty of its environment.

Aquifer.—A geologic formation, group of formations, or
part of a formation that transmits water readily and can
supply wells or springs. Also may be regarded as an
underground reservoir.

Atmospheric-transport and deposition model. —A mathe-
matical description of the characteristics of the regional
atmosphere, climate, and land forms that control the
migration of airborne particles and gases from a source
to a site of deposition or dispersion.

Benthic invertebrate. — An animal without a backbone that
lives in or on the bottom of an aquatic environment. In-
cluded are organisms such as insects, worms, snails,
clams, and leeches.

Biochemical degradation. —The alteration or breakdown of
a compound directly or indirectly by microorganisms such
as bacteria or algae.

Calcining. —Conversion of minerals into a calcium and
magnesium oxide by burning and roasting.

Clastic rock.—A rock that originates as broken fragments
of preexisting rocks that are mechanically transported and
reconsolidated. Examples include sandstone and shale.

Continental. —Formed on land masses or within freshwater
lakes.

Crude oil. —Naturally occurring petroleum, as it comes from
an oil well.

Dawsonite. —NaAl(OH),CO,: A rare carbonate mineral
containing sodium and aluminum that was first discov-
ered in a dike near McGill University, Montreal, Canada.
Dawsonite is a possible source of aluminum oxide and
other chemicals used in industry. In recent years the
mineral has been found in small amounts in sedimentary
rocks in Australia, Russia, Tanzania, and Alaska. The
world’s largest occurrence is in the Colorado oil-shale
deposits where it locally comprises about 10 percent by
weight of the oil shale.

Depositional basin. — A basin that originates because of, or
includes, the accumulation of sediments in a low region
of the crust of the Earth.

Diffusion.—A process of natural scattering in which con-
stituents migrate because of differences in concentration
or temperature.

Dip.—The inclination of a geologic bed, joint, fracture, or
any planar geologic feature; measured as an angle below
the horizontal.

Dispersion.— A process of natural scattering in which con-
stituents or contaminants migrate because of the charac-
teristics of the flow system.

Dissolved oxygen.—Oxygen that is dissolved in water. The
oxygen comes from the atmosphere or is produced
by aquatic plants during photosynthesis. Respiration
by aquatic plants, animals, and bacteria consumes
dissolved oxygen. A low concentration of dissolved ox-
ygen in streams or lakes may indicate degraded water
quality.

Drainage basin.—A land area that collects precipitation
water and drains it to a stream system, lake, or reservoir.

Evapotranspiration.—Loss of water by evaporation from
wet surfaces and by transpiration through plants.

Fan deposit. —A cone-shaped sedimentary deposit that
results when streams deposit sediment as they flow from
highlands onto lowlands. Also called an alluvial fan.

Fault.—A natural break in rock strata that may or may not
result in displacement.

Filtration.—The separation of suspended solids from water
by passage through a natural or artificial porous barrier.

Flood plain.—The strip of relatively flat land along a stream
channel that is underlain by sediment deposited by the
stream. The flood plain is covered by water during floods.

Food chain.— A series of organisms in which the larger feed
on the smaller.
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Fracture.— A break in a rock due to mechanical failure under
stress. A general term that includes faults, joints, and
cracks.

Gain-and-loss study.—A series of stream-discharge meas-
urements that are used to account for all changes in
streamflow and to calculate the exchange of water be-
tween the stream and connected aquifer.

Geophysical log.—A record of various characteristics of
rock formations that is obtained by lowering a probe
down a well or test hole, making measurements, and
recording them using surface instruments. The measured
characteristics include the physical, electrical, acoustical,
or chemical properties of the formations. The inter-
pretation of these characteristics is helpful in exploring
for minerals and in determining rock properties.

Ground-water model. —The mathematical description of a
ground-water system used to simulate and study the
behavior of the system, under existing, hypothetical, or
proposed conditions.

Ground-water reservoir.—An aquifer system that can be
utilized to store and withdraw water. Access to a ground-
water reservoir is normally through wells.

Halite.—NaCl: the mineral name for common table salt; oc-
curs comingled with nahcolite in beds as thick as 70 feet
in the Colorado oil-shale deposits.

Hydrocarbon trap. —A stratigraphic or structural barrier to
the upward migration of oil and gas that permits ac-
cumulation in a reservoir.

Igneous intrusive rock.—A rock that originates in the molten
or partially molten state, invades other rocks, and then
solidifies.

In situ retort.—An oil-shale retort that is constructed using
a cavity mined within the ore, underground, in order to
reduce mihing costs.

Infiltration.—The general process by which water flows into
porous material. For example, precipitation water pass-
ing through the land surface and into the zone below, or
water passing into a pile of waste material.

Ion.— An electrically charged atom or group of atoms that
results from the loss or gain of electrons. Most dissolved
minerals in water occur as ions.

Ion-exchange reactions.—Chemical reactions in which ions
in solution are exchanged with chemical elements in other
materials. For example, calcium ions in solution common-
ly replace sodium in clay, releasing the sodium into
solution.

Joint.—A fracture without significant displacement in a
rock. Parallel joints are called joint sets.

Kerogen.—A solid, insoluble organic material found in
sedimentary rocks, that can be converted to petroleum
products by destructive distillation. Diesel fuel can be
made easily from these petroleum products; gasoline can
be made also, but requires more upgrading.

GLOSSARY

Landsat image. —An image of the Earth’s surface obtained
by sensors on a satellite. The data obtained by the sen-
sors are stored on magnetic tape, either on the satellite
or at a ground station. Eventually the data are processed
and often used to prepare an image on film for inspec-
tion and analysis. The area on the ground that is shown
in an image is a scene.

Leachate.—Soluble chemical constituents removed by per-
colating water from a mass of material, such as a spoil
pile of retorted shale.

Lean oil shale.—For this report, oil shale that contains 15
gallons of oil or less per ton of rock.

Leasing.—A method by which one who desires to explore
or develop minerals owned by another can contract with
and pay the owner for these privileges. The owner is called
the lessor; the one who leases for exploration or develop-
ment is called the lessee.

Lineament.—A linear feature on the surface of the Earth that
may be an expression of fractures and faults in the rocks
below.

Locatable mineral. — A mineral deposit that can be possess-
ed by one who marks the boundaries of his mining claim
on the ground and publicly proclaims his claim in the pro-
per manner.

Marine.—Formed in an ocean environment; for example,
limestone.

Marl. —A poorly consolidated rock that consists of a mix-
ture of clay and calcium carbonate and is formed in the
bottoms of lakes, ponds, and marshes.

Marlstone.—A consolidated rock that consists of a mixture
of shale and calcium carbonate.

Mine roof.—The ceiling or back in an underground mine.

Mining claim.—A portion of the public mineral lands which
a miner, for mining purposes, takes and holds in accor-
dance with mining laws.

Model.—The mathematical description of a process
or system that is used to simulate, study, and predict
the behavior of the system under a variety of con-
ditions.

Model calibration.—In hydrology, a process in which the
simulated results from a model are compared with
measurements onsite. The model is adjusted until the
model results and field measurements are similar or equal.
A calibrated model is likely to be more accurate in
forecasting than an uncalibrated model.

Modified in situ retort.—A special type of in situ retort in
which 20 to 40 percent of the oil shale is mined. The re-
maining ore is blasted into fragments. Air and gas are in-
jected into the retort and the fragmented shale is ignited
at the top of the retort using an external fuel source. As
burning proceeds downward, the heat retorts the underly-
ing oil-shale fragments, and shale oil and gases flow
downward to a collection site.
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Nahcolite. —NaHCO,; a naturally occurring sodium bicar-
bonate mineral having the same chemical composition as
household baking soda. Nahcolite is a potential source
of several chemicals used in industry including the
removal of sulfur from exhaust gases. The name of the
mineral is derived from the chemical formula, Na-H-
CO-lite.

Natural discharge.—Loss of water from a ground-water
reservoir, as to a spring or stream.

Natural recharge.—Addition of water to a ground-water
reservoir, as by infiltration from precipitation, alake, or
a stream.

Node.—In ground-water modeling, an imaginary volume
of a ground-water flow system within which the
hydrologic characteristics are assumed to be uniform. By
coupling the hydrologic characteristics of the array of
nodes of a flow system with the proper flow equations,
a ground-water model is constructed.

Normal annual precipitation.—The average annual
precipitation recorded from 1931 to 1960.

Oil shale.—A sedimentary rock that contains kerogen and
yields hydrocarbon material when heated.

Orogeny.—The process by which structures within moun-
tain areas are formed, including uplift, thrusting, fault-
ing, and folding.

Overburden.—The consolidated or unconsolidated rock
material that overlies a mineral deposit.

pH.—A chemical symbol used to specify the hydrogen ion
concentration in a solution. It is defined as the negative
base 10 logarithm of the hydrogen ion concentration in
moles per liter. A pH of 7.0 indicates a neutral solution,
below 7.0 is acidic, and above 7.0 is alkaline.

Permeability. —A property of consolidated or uncon-
solidated material that describes the ease with which a
fluid may move through openings in the material under
standard conditions. Material of high permeability may
transmit large quantities of a fluid in a short time; material
of low permeability may transmit large quantities of a
fluid in a long time and (or) over a large area.

Porosity.—The volume of the void space of a rock, express-
ed as a fraction or percentage of the volume of the whole
rock.

Primary permeability. —Rock permeability that is due to in-
terconnected openings that were formed during deposi-
tion, such as the pores in a sandstone aquifer.

Radiometric dating. —The calculation of the age of a rock,
mineral, or water sample by chemical analysis to deter-
mine the extent of decomposition of included radioactive
elements.

Remote sensing.—A technique for detecting the nature or
condition of the Earth’s surface without touching it.
Reserve.—The part of an identified resource that can be ex-

tracted and produced economically.

XVII

Resource.—A concentration of naturally occurring solid, li-
quid, or gaseous material in or on the Earth'’s crust in such
form and amount that economic extraction of a commodi-
ty from the concentration is currently or potentially
feasible.

Retort.—A vessel used to heat crushed oil shale and extract
the organic material. This material is converted to useful
petroleum products.

Rich oil shale.—For this report, oil shale that contains 15
gallons of oil or more per ton of rock.

Room-and-pillar mine.—An underground mine in which
large rooms are excavated by access through a shaft or
adit. The mine roof is supported by unmined rock called
pillars. These pillars may be removed later during with-
drawal from the mine.

Rubblize.—To break rock into rough fragments using
explosives, in preparation for in situ retorting of oil
shale.

Scrubbing equipment. — Apparatus used to cleanse gases and
vapors of impurities before they are released from a proc-
essing plant.

Secondary permeability.—Rock permeability due to inter-
connected openings formed after deposition, such as frac-
tures or solution channels.

Sedimentary rock.—A rock formed by the consolidation of
accumulated loose sediments. The sediment originates as
mechanically broken fragments during erosion, chemical
precipitates from solution, or organic remains or secre-
tions of plants and animals.

Shale oil. —Qil that is extracted from oil shale and normally
requires reaction with hydrogen for conventional uses
associated with crude oil.

Solute-transport model. —The mathematical description of
a hydrologic system, including dissolved constituents in
the ground and surface water. Used to simulate and study
the relations between the flow system and the dissolved
constituents under various conditions.

Spoil pile.—The dump where mine-waste materials are
disposed of or piled.

Strike.—The directional trend of a horizontal line in the
plane of an inclined geologic bed, joint, fault, or struc-
tural plane. Used in conjunction with the term, dip, to
describe a spatial orientation.

Structural basin.—A downwarped or faulted zone in the
Earth’s crust resulting from large-scale movement and in
which sediments have accumulated.

Sublimation.—The change in state of a solid to a gas or vice
versa, without becoming a liquid.

Subsidence.—The settling of the Earth’s surface because of
solution action, compaction, mining, withdrawal of
water, crustal warping, or other cause.

Surface mining. —Mining in surface excavations, such as an
open pit or strip mine.



XVIII

Surface runoff. —That part of the precipitation which travels
over the soil surface to the nearest stream channel.

Tectonic.—A geologic term referring to the structural and
deformational characteristics of a large region.

Titration.—A chemical method for determining the amount
of a constituent in a solution by adding a reagent of
known concentration to the solution and observing the
added volume required to convert the constituent to some
other form.

Trap.— A barrier that impedes the upward migration of oil
and (or) gas and allows either to accumulate. A strati-
graphic trap may result where a rock unit of low perme-
ability forms a barrier; a structural trap may result from
a barrier of low permeability that is created by folding,
faulting, or other deformation.

Turbidity current.—A sediment-laden water current that
flows by gravity down the slope and along the bottom
of a lake or sea. Such currents can transport large volumes
of sediment from the shore to the deepest parts of a lake
in a short time, measured in hours or a few days. Possibly

GLOSSARY

as much as one-half of the Colorado oil-shale deposits in
the deeper part of the Piceance basin were deposited by
such flows.

Unconformity. —A large gap in the geologic record that is
indicated by missing rock units in the stratigraphic
succession. The missing units either never were
deposited or were deposited and subsequently removed
by erosion.

Undergound mining. —Mlining in underground excavations,
such as room-and-pillar mining.

Valley-fill alluvial aquifer.—A saturated alluvial deposit of
sand and gravel that underlies and normally is
hydraulically connected to an overlying stream.

Water right.—An order issued by a specific State court,
validating an appropriation of water, and establishing a
priority for that water use.

Watershed model. —A mathematical description of a water-
shed, used to simulate and study the behavior of the
watershed, under existing, hypothetical, or proposed
conditions.
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Several effects of oil-shale development may require
careful monitoring and management. The large volumes of
retorted shale resulting from oil-shale development may be
leached of toxic materials or eroded. The in situ retorts may
release a variety of wastes within the bedrock aquifers. Emis-
sions from retorts to the atmosphere may degrade precipita-
tion and lake water.

In the final chapter, three distinct levels of oil-shale
development are compared. The relative benefits, water re-
quirements, sources of water supply, and effects of develop-
ment are estimated.

References are omitted from the text, and are listed at the
end of each section.
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The minerals nahcolite, dawsonite, and halite occur with
the oil shale because they formed together in ancient lakes.
A description of the depositional conditions follows.
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SYSTEMATIC JOINTS WITHIN OIL SHALES AND ASSOCIATED ROCKS
OF THE GREEN RIVER FORMATION

By EARL R. VERBEEK and MARILYN A. GROUT

Nearly all rocks exposed at Earth's surface contain
numerous joints—naturally occurring fractures that break
a once-solid rock mass into a series of smooth-sided blocks.
Sizes of such joint-bounded blocks span a broad range;
blocks from one-half to several feet on a side are typical of
many areas, including the Piceance basin. A small outcrop
of rock thus may contain hundreds of joints, and a mine may
contain millions—yet joints in the Piceance basin received
only scant attention until 1979-81 when the joint sets de-
scribed here were identified. Extended studies of these joints
are described in reports listed in the references at the end
of this chapter. The importance of joints to the oil-shale in-
dustry stems from two facts:

1. Joints are the primary conduits through which ground
water flows beneath the basin.

2. Joints impair the stability of any manmade cut in rock,
whether at the surface or underground.

HYDROLOGIC ASPECTS OF JOINTS

Processing of oil shale will create increased demands for
water in the Piceance basin. Costly importation of water from
outlying areas could be minimized if nearby sources of
ground water were identified and tapped. Successful develop-
ment of the basin’s ground-water resources hinges on an ade-
quate understanding of water flow through the various
regional ground-water reservoirs which are discussed in the
chapter “Paleozoic and Mesozoic formations and their poten-
tial as ground-water reservoirs” On a more local scale,
drainage of underground mines and in situ retorts and the
disposal of waste water from both sources pose their own
special concerns. Drainage of a mine area, for example, might
reduce the yield of nearby water wells. Disposal of the water
by injection could have adverse effects on water quality in
nearby streams and in wells drilled for drinking water. Here,
too, an understanding of ground-water flow through frac-
tured rocks is necessary to optimize locations of new wells
and to predict their effects on existing wells and streams.

The flow of ground water beneath the Piceance basin is
most conveniently envisioned as taking place through three
types of openings in rock:

1. Primary voids, which are small pores and hairline
cracks between individual mineral grains;

2. Secondary voids created by the dissolution of water-
soluble minerals by ground water; and

3. Joints, whose opposing walls commonly are separated
slightly and permit the passage of water.

Primary voids in oil shale transmit water only at ex-
ceedingly slow rates, both because the openings are so minute
and because many of them are clogged with kerogen, the
solid hydrocarbon that liberates shale oil upon heating. In-
tact oil shale thus is one of the least permeable rocks in
northwestern Colorado. Secondary permeability has resulted
wherever ground water has removed the water-soluble
minerals nahcolite and halite, leaving behind a highly porous
oil-shale rubble. Such rubble transmits water freely but is
of restricted occurrence within the Green River Formation
because most of the formation lacks significant quantities
of water-soluble minerals. Joints, in contrast, occur
throughout the Green River Formation, where they increase
permeability and storage and influence flow paths of ground
water. Of the three general types of water-transmitting open-
ings in the oil shales, joints are the principal conduits for
ground-water flow at shallow to intermediate depths. Ac-
cordingly, local joint networks can be expected to affect the
yield of water wells, the way in which mine drainage affects
wells and streams, and the suitability of other wells for in-
jecting waste water into aquifers. Water movement within
the fractures and pores of the aquifers associated with oil
shale also is discussed in the chapter “Hydrologic system of
the Piceance basin.’

ENGINEERING ASPECTS OF JOINTS

The success of mining oil shale by any method will de-
pend to some extent on an adequate understanding of the
joint network at the site. Where shale oil is to be recovered
from an in situ retort, for example, preexisting fractures will:

1. Affect the ease of properly rubblizing the rock in the
retort and affect the size and shape of the resultant
blocks;

2. Affect hydraulic connection between the retort and
recovery wells for hydrocarbons liberated from the
burning shale; and

3. Control the transport, by ground water, of leachates
from the retorted shale.
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Joints in underground mines provide numerous entries for
water and hazardous gases into the mine workings. High-
capacity pumps and added ventilation equipment may be
necessary where workings intersect zones of closely spaced
joints. Rock stability may be a problem in these same areas;
for example, pillars may have only a fraction of their design
strength if they contain large, inclined joints. However, the
cost of excavating rock in some underground mines may be
decreased if the mine is designed to take maximum advan-
tage of the natural fracture network.

Joints at the land surface are of lesser consequence; their
chief effect is to reduce the stability of manmade cuts in rock,
locally to the point of collapse. Small rockfalls of several or
more joint-bounded blocks are common along roadcuts,
especially during the cooler months when alternate freezing
and thawing of water within joints wedge the rock apart.
Collapse of larger volumes of rock is possible wherever the
rock is weakened by closely spaced joints, particularly where
many joints are parallel to or dip toward the free face of an
excavation. Local modifications of the design of open-pit
mines may be advisable where fracture patterns could jeopar-
dize safety.

PRELIMINARY STUDIES OF JOINTS INDICATE
SYSTEMATIC PATTERNS THAT ARE
SIGNIFICANT TO HYDROLOGY AND MINING

Joints of diverse orientation within the same exposure are
usual and commonly impart to the rock a somewhat chaotic
or randomly broken appearance. Closer inspection of the
exposures, however, generally reveals that the orientations
of the joints, although diverse, are also highly systematic—
that is, that the rock is fractured in a definite pattern that
can be recognized and traced from one exposure to another.
Joints commonly occur in sets—groups of parallel or nearly
parallel fractures of similar appearance and presumably com-
mon origin. Work is now in progress to determine the relative
sequence of joint-set development at more than 350 localities,
to correlate joint sets from one locality to another, and thus
ultimately to determine the fracture history of the Piceance
basin in considerable detail. This discussion gives some
preliminary results from the ongoing study of exposures of
the Green River Formation in the northern part of the Pi-
ceance basin.

Eight sets of joints have been recognized within rocks of
the Green River Formation in the Piceance basin. Joints of
each set have characteristic orientations, sizes, spacings, ages,
surface markings, and mineral coatings, and they can be
distinguished from joints of other sets by these features. Two
to four sets of joints, unequally developed, are present in
most exposures of the Green River Formation. No exposure
contains all eight sets.

The term joint is restricted by some to those fractures that
simply have opened slightly. Other fractures along which

slip has occurred, and the opposing walls of the fracture have
ground against each other, are more properly termed faults.
However, faults along which the amount of slip is negligibly
small, less than one inch, commonly are grouped with joints
for descriptive purposes. We will follow that convention in
this paper.

Joint sets are here referred to by the letter F (for fracture),
followed by a subscript that indicates the relative age of the
set; F, is the oldest set. Thus, joints of the third period of
systematic fractures to have formed within the oil shales of
the Green River Formation are referred to simply as F,
joints. If two or more sets formed during the same period,
they will be denoted F,,, F,;, etc. Noteworthy features of
each joint set are mentioned briefly below and are entered
in condensed form in table 3. Readers not interested in the
descriptions of specific sets may wish to skip to the sum-
mary section on page49.

JOINT SETS F,, AND F,,

Joints inclined to the sedimentary layers at angles of about
50 to 70° were the first systematic fractures to form in parts
of the Green River Formation. In most places, the F,, and
F,, joints trend northwest to north, but north north-easterly
trends have been noted locally. Some of the joints (F,,) dip
to the northeast or east, whereas others (F,;) dip to the
southwest or west. The two sets are of the same age; at many
outcrops it can be shown that F,, and F,; joints developed
almost simultaneously in the same layer.

The distribution of F,, and F,; joints within oil shales of
the Green River Formation is patchy. Locally, however, they
dominate the joint pattern of the oil shales to the virtual ex-
clusion of other sets. A third set, vertical F,. joints, have
been found in a few places but are so uncommon that they
will not be discussed here.

The F,, and F,; joints are small-scale normal faults that
record breakage of the oil shales under the weight of overly-
ing, younger sediments. Beds of oil shale commonly are off-
set a few tenths of an inch along F,, and F,; joints, whose
surfaces locally bear minute scratches that formed as the two
walls of each joint slipped against each other. The slight slip
of one joint wall relative to the opposing wall opened a series
of voids along some of the F,, and F,; joints that, as a
result, are locally important conduits for ground-water flow.
Entry of water into mine workings and decreased rock
strength are likely where F,, and F; joints are closely
spaced.

JOINT SET F,

West- to northwest trending vertical F, joints, the domi-
nant fractures of the Green River Formation, are present in
nearly all outcrops. The F, joints are the best developed of
all sets in most exposures and typically are most abundant
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JOINT SETS F,, AND F,,

The F,, and F,; joints appear to be restricted to the
southern part of the Piceance basin; they have not yet been
found in rocks exposed in the drainage areas of Piceance
and Yellow Creeks. Little is known of these joints because
they have been studied within only a small area of the Roan
Plateau. Their characteristics as outlined here thus may not
be typical of these joints in other areas.

The F,, and F,; joints are large fractures; surface areas
of more than 100 square feet are common. Like the F,, and
F ; joints, they appear to have developed virtually simul-
taneously as two sets of fractures inclined to the sedimen-
tary layers. Lateral variations in the spacing of F,, and F,
joints are slight within the small area studied, but differences
in spacing from bed to bed are pronounced and abrupt. The
F,, and F,; joints are best developed in rich oil shales but
are absent, or sparse, in lean oil shales, marlstones, and
sandstones. Studies of joints in surface exposures thus are
of uncertain value in predicting the spacing, or even the ex-
istence, of F,, and F,; joints in different rocks at depth.

The large, inclined surfaces of F,, and F,; joints may
seriously weaken pillars, roofs, and some walls in
underground mines. The collapse of excavated faces in
mines, along roads, and in open cuts is possible wherever
the F, trend is nearly parallel to the cut face, and par-
ticularly where the joint set dipping toward the face is well
developed or undercut.

JOINT SET F,

Joints of this set are among the most common in the Pi-
ceance basin. The F, joints generally are small, and few cut
more than one bed. They are second only to F, joints in
abundance and are developed throughout an equally large
area. Like F, joints, F, joints generally are abundant in lean
oil shales and become progressively more widely spaced in
richer beds. The trend of the F, joint set gradually changes
orientation from nearly due north at Rio Blanco to northeast
at the mouth of Piceance Creek; the F, joints thus are near-
ly perpendicular to F, joints in most places. The F, joints
probably facilitate movement of ground water through
bedrock by providing permeable cross-linkages between ad-
jacent F, joints, presumably the main conduits for ground-
water flow.

49
JOINT SET F,

The F, joints are nearly parallel to F, joints and hence are
readily confused with them. However, F; joints do not ex-
tend from one bed into another, are younger than F, joints,
and show little evidence of past ground-water flow (the sur-
faces of F, joints are fresh and are not lined with calcite).
The F, joints are much less abundant and open than F,
joints.

PATTERNS OF THE EIGHT JOINT SETS
CAN BE SUMMARIZED

Eight sets of joints have been recognized to date within
rocks of the Green River Formation in the Piceance basin.
Only two of the eight sets occur throughout the formation,
thus dominating the joint pattern in most parts of the basin.
The joints of five other sets are only locally common, and
the joints of one set are small and insignificant.

The two dominant sets trend generally west-northwest
to northwest (F,) and north-northeast to northeast (F,),
forming a nearly perpendicular network of joints on a
regional scale. Shapes of joint-bounded blocks are deter-
mined by the relative abundance of members of each set,
and range from northwest-trending vertical slabs (as
shown in the photographs) where F, joints are sparse, to
vertical prisms where F, joints are abundant. This simple
fracture pattern locally is modified by joints of other sets,
but only rarely are more than four sets present in the same
outcrop.

The F, and F, joints probably dominate the fracture pat-
tern of the buried oil shales of the basin interior as
thoroughly as they do the exposed rocks along the basin rim.
It is likely that the flow of ground water beneath the Pi-
ceance basin is influenced strongly by the distributions, sizes,
spacings, openings, and interconnections of F, and F,
joints. Ground water within any particular bed thus will
flow more readily in some directions than others—that is,
horizontal permeabilities are strongly direction dependent
in fracture-controlled aquifers. The direction of greatest
horizontal permeability within a bed will not necessarily be
parallel to the joints of either set.
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Unconsolidated sedimentary depcsits overlie the bedrock
framework of the Piceance basin. Some of these deposits
are associated with the stream system. A discussion of
alluvial and fan deposits of unconsolidated material follows.
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At tract C-b, the model predicted that:

1. Both bedrock aquifers would need to be pumped to
drain the mines, and

2. The changes in water quality in the bedrock aquifers
would be similar to the changes at tract C-a.

A reduction in streamflow and an increase in dissolved
solids in most reaches of the streams also were predicted by
the model. After mining activity is completed, the pumps
will be shut off and the hydrologic system will recover. The
model also was used to predict the effects of solution by
water flooding the abandoned mines. The model indicated
that solution of soluble minerals in the abandoned in situ
retorts will increase the dissolved-solids concentrations in
ground water near the mines, especially in aquifers of high
permeability.
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A study of organisms in streams provides a rapid method
of appraising the health of a stream and its ability to sus-
tain higher forms of plant and animal life. A description
follows of some of the organisms in Piceance Creek.
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PALEOZOIC AND MESOZOIC FORMATIONS AND THEIR POTENTIAL
AS GROUND-WATER RESERVOIRS

By MARJORIE E. MACLACHLAN and FRANK E. WELDER

DEEP GROUND-WATER RESERVOIRS
MAY BE USED TO FURNISH WATER
SUPPLIES OR TO STORE WASTEWATER

Development of oil shale and associated minerals, accom-
panied by related population and industrial growth, will in-
crease water demands in northwestern Colorado. Cost
estimates are as much as one billion dollars for providing
a water supply from streams and surface reservoirs.
Preliminary hydrologic studies of the Green River and Uinta
Formations in the Piceance basin indicate that millions of
acre-feet of ground water may be present in these under-
ground reservoirs. However, deep ground-water reservoirs
that may lie stratigraphically beneath the Green River For-
mation in Paleozoic and Mesozoic formations have not been
explored or tested for storage, yield, and water quality.

A thorough understanding of all potential aquifers, deep
and shallow, will allow the most economical development
of new supplies. Exploratory drilling may locate large
ground-water reservoirs and reduce the need for the con-
struction of costly dams, canals, pipelines, and pumping sta-
tions that are required for surface-water supplies. Deep
ground-water reservoirs may not only constitute a valuable
alternative or supplemental water supply, but also can serve
as possible storage sites for injected wastewater.

GEOLOGIC EVIDENCE INDICATES THAT
DEEP FORMATIONS IN PICEANCE BASIN
MAY BE AQUIFERS

Exploratory drilling for oil and gas along the margins of
structural basins of northwestern Colorado has provided
limited information on the subsurface characteristics of the
geologic formations. Additional studies have been made of
formations exposed at the surface. The information indicates
that aquifers of Paleozoic and Mesozoic age may lie adja-
cent to the Piceance basin, at depth within the Piceance

basin, and in northwestern Colorado in general. The range
in depth of these aquifers resulted from erosion and from
the structural deformation described in the chapter “General
geology of the Piceance basin.”

A discussion of the sedimentary sequence of Paleozoic and
Mesozoic formations follows. It includes descriptions of the
water-supply potential of several formations based on
geologic and hydrologic information.

PALEOZOIC AND MESOZOIC FORMATIONS
ARE SHOWN ON THREE
STRATIGRAPHIC COLUMNS

Different types of Paleozoic and Mesozoic rocks are found
in different places around the margins of the Piceance basin.
Three stratigraphic columns show their sequence, age, name,
rock type, and thickness along the Grand Hogback, on the
east side of the Piceance basin; near the Yampa River, north
of the Piceance basin; and near Grand Junction, on the
southwest side of the Piceance basin.

Unconformities that are shown in the stratigraphic col-
umns indicate that certain formations and parts of forma-
tions are missing. Attempts to drill exploratory holes to
certain formations need to take into account nearby strati-
graphic columns, to be certain that the formation interval
is present beneath the drilling site. Unconformities also
separate the oldest unit shown in each of the three columns
from underlying Precambrian rocks. The youngest unit
shown in each column is unconformably overlain by Ter-
tiary rocks that are discussed in the chapter “General geology
of the Piceance basin.” About 25,600 feet of Paleozoic and
Mesozoic rock is represented in the composite section along
the Grand Hogback, about 11,600 feet of Paleozoic and
Mesozoic rock is found near the Yampa River, and about
10,400 feet of Mesozoic rock (the Paleozoic is absent) is pres-
ent near Grand Junction.
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TABLE 4.—Correlation chart showing Paleozoic and Mesozoic formations

STRATIGRAPHIC COLUMN NEAR YAMPA RIVER
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CHEMICAL EFFECTS AND CONTROL OF WASTES FROM IN SITU RETORTS

Retort water is produced during operation of the in situ
retort. Retort water recovered with the shale oil and gas
probably will need extensive treatment before disposal or
reuse, but some retort water, gases, and shale oil may
migrate through small fractures. The effect of these
unrecovered liquid and gaseous wastes on the ground-water
quality has not been determined.

When the burned modified in situ retorts are abandoned
and mine-drainage operations cease, the retort will flood
with ground water as it cools. As the regional ground-water
flow is reestablished, the retorted shale will be leached by
ground water. The physical stability of the saturated shale
and the fate of solutes leached from the shale are two con-
cerns about abandonment of modified in situ retorts.

CONTROL TECHNOLOGY CAN DECREASE
CONTAMINATION FROM IN SITU RETORTS

Technology will be important to control leachate from
in situ retorts. Hundreds of in situ retorts could contaminate
ground and surface water basin wide for hundreds of years.
Several techniques have been proposed to minimize the
adverse effects of any contaminants from in situ retorts:

1. Maintain operating pressures in the active in situ re-
torts in the unsaturated zone at less than surrounding
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air pressures, using controlled mine ventilation. The
lower pressure should help to contain gaseous and li-
quid wastes within the retort.

2. Inject grout into the retort zone before retort aban-
donment in order to prevent the infiltration of and
leaching by ground water.

3. Treat wastewater before discharging it into streams.

4. Store piles of mined, unretorted oil shale in areas
where problems of erosion and leaching are less like-
Iy to develop.
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EPILOGUE
By O. JAMES TAYLOR

The mineral resources of the Piceance basin are an abun-
dant and varied National treasure. Studies of the basin have
provided information on the interwoven geologic and
hydrologic processes that caused the minerals to accumulate.
An awareness of these processes is helpful in understanding
the occurrence and association of these minerals and in
predicting where they may be found.

The desirable level of mineral development—including the
fundamental question of whether or not the minerals should
be developed—is complex. Development will result in a
variety of National benefits accompanied by regional disad-
vantages. The relative benefits and disadvantages also will
depend on the duration of development, itself a function
of the level of development.

Plans to develop the minerals can be improved by con-
sidering the conditions of mineral deposition, burial, and
structural deformation. For example, mining and retorting
can be designed to improve recovery, maintain safety, and
reduce many undesirable effects of development in the

basin—if the available information is used. Waste materials
that result from mineral development will change the land
surface of the basin, its water resources, and atmospheric
conditions. The disadvantages of the changes can be reduced
by actions that consider the interactions between the waste
materials and the hydrologic systems.

Water resources for oil-shale development are paramount.
The ground water that occurs with the minerals is a mixed
blessing; it must be drained before mining but it will pro-
vide part of the supplies needed for development. The avail-
ability of additional supplies from streams, regional
ground-water reservoirs, and other sources from which
water might be imported, is uncertain.

Proper development will require additional information
to ensure that the benefits outweigh the disadvantages. This
information can be provided by Earth scientists—those
remarkable men and women in government, industry, and
universities whose imaginative and comprehensive investiga-
tions have provided the material discussed in this volume.
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